- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0010000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Tran, Nhat Thanh (3)
-
Xin, Jack (2)
-
Benson, David A. (1)
-
Pankavich, Stephen D. (1)
-
Schmidt, Michael J. (1)
-
Zhou, Guofa (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study a fast local-global window-based attention method to accelerate Informer for long sequence time-series forecasting (LSTF) in a robust manner. While window attention being local is a considerable computational saving, it lacks the ability to capture global token information which is compensated by a subsequent Fourier transform block. Our method, named FWin, does not rely on query sparsity hypothesis and an empirical approximation underlying the ProbSparse attention of Informer. Experiments on univariate and multivariate datasets show that FWin transformers improve the overall prediction accuracies of Informer while accelerating its inference speeds by 1.6 to 2 times.On strongly non-stationary data (power grid and dengue disease data), FWin outperforms Informer and recent SOTAs thereby demonstrating its superior robustness. We give mathematical definition of FWin attention, and prove its equivalency to the canonical full attention under the block diagonal invertibility (BDI) condition of the attention matrix. The BDI is verified to hold with high probability on benchmark datasets experimentally.more » « lessFree, publicly-accessible full text available May 19, 2026
-
Tran, Nhat Thanh; Xin, Jack; Zhou, Guofa (, Springer Nature Switzerland)
-
Tran, Nhat Thanh; Benson, David A.; Schmidt, Michael J.; Pankavich, Stephen D. (, Advances in Water Resources)null (Ed.)
An official website of the United States government
